start previous pagenext page end   210
RECONVERSION  
RESEARCH

THE research department, which during the war and before had concentrated its energies on problems of national importance, returned quickly to its normal industrial field in which new problems were already awaiting solution. Some long-term investigations and fundamental work suspended during, the war were restarted, but, as in all companies of the A.E.I. Group, the immediate needs of industry had the prior claim. To redress the balance, an A.E.I, research laboratory was set up in 1947 at Aldermaston Court near Reading; this was exclusively for long-term research, and T. E. Allibone of the high voltage laboratory at Trafford Park was chosen as its first manager.

NUCLEAR PHYSICS
In the field of nuclear physics opened up by Cockcroft and Walton's disintegration of the atom, there has been much experimental work with methods and apparatus for accelerating atomic particles, such as neutrons, positive ions, and electrons, to high velocities and therefore high energy levels.

Cyclotrons—an early form of electron accelerator—were constructed by the Company in 1938, one in collaboration with Cockcroft for installation at the Cavendish laboratory and another at Liverpool for Sir James Chadwick, the discoverer of the neutron. After the war it became possible to organize a research team, which included F. R. Perry, P. P. Starling, and J. D. Craggs, to deal with nuclear physics work; a 700-kV neutron generator for the Imperial College of Science and Technology was installed early in 1946.

In the same year a new type of accelerator, the 'betatron', was designed and installed—for the first time in this country—in the high voltage laboratory; the energy of the output beam is twenty million electron-volts. Besides its original application to nuclear research work, the betatron promises to influence medical research and high intensity x-ray therapy and radiography. It may be used in the treatment of malignant tumours, to produce radioactive 'tracer' elements for circulating in living organisms such as the human body, and in industrial research to provide a quick method of radiography for material of considerable thickness.

Attention was next turned to equipment of even greater output, and experimental work in cooperation with Professor P. I. Dee of Glasgow University and with the Telecommunication Research Establishment led to the design of a 'synchrotron'. This machine will be installed at Glasgow for work on subatomic physics. It will produce electrons or gamma radiation at an energy level of 300 MeV and, with an electromagnet weighing 125 tons, will be the most powerful electron accelerator of its type in the country.